INLAND FLOOD DAMAGE REDUCTION BREAKOUT SESSION

DFW Hyatt 21-23 March 2001

Breakout Session Members

Districts/Divisions/Guests

- Bill Barron, Nashville
- Steve Monte, North Atlantic Division
- Jim Pennaz, Honolulu
- Meg Jonas, Baltimore
- Bill Espy, Espy Consultants
- Forrest Holly, IIHR
- Claude Strauser, St. Louis
- Joe Dixon, Los Angeles
- Frank Santangelo, New York
- Chuck Wener, New England
- John Carroll, Sacramento
- Jim Blanchar, Rock Island

HQ, Labs

- David Biedenharn, CHL
- Harold Britton, TEC
- Tom Richardson, CHL
- Darryl Davis, HEC
- Arlen Feldman, HEC
- Ron Conner, CECW-OE
- Mike Kidby, CECW-OD
- Kate White, CEERD-RT

Facilitator:

 Don Bergner, South Pacific
 Division

Introduction

- The present group is a limited representation of the inland flood damage reduction community - therefore, more widespread dissemination and input is required before this list can be considered to represent Corps-wide needs and priorities
- The results presented here derive from this brainstorming session and the earlier LAN brainstorming

Brainstorming Goals

- Identify research and development opportunities related to inland flood damage reduction
- Prioritize R&D areas identified
- Provide input to HQUSACE
 - -FY02 investment strategy
 - -FY03 budget development

INLAND FLOOD DAMAGE REDUCTION BUSINESS PRACTICE

MAJOR GOAL*:

Reduce, through an integrated program of structural and nonstructural means, the adverse economic, social, and environmental consequences to the Nation resulting from inland flooding

* Flood Damage Reduction Murder Board

Inland Flood Damage Reduction

Future Operating Capabilities*

- 1. REDUCE LIFE-CYCLE COSTS of system and unit infrastructure
- 2. Improved system monitoring, early-warning forecasting, operation, and response to REDUCE LOSS OF LIFE AND DAMAGE due to flooding and storms
- 3. WATERSHED/REGIONAL MANAGEMENT to optimize function of system, reduce costs, and increase benefits for multipurpose projects

* Flood Damage Reduction Murder Board

Topics

- 1. physical processes
- 2. remedial and mitigation measures
- 3. built environment
- 4. natural environment
- 5. human consequences
- 6. monitoring and maintenance
- 7. emergency management
- 8. planning analysis process
- 9. policy from a Federal perspective

Ranking Procedure

- Consider all issues raised with the understanding that some may belong elsewhere
- Votes by all but ERDC/HEC/HQ personnel
- No opinion=no vote
- Ranked by $\Sigma(High + Medium)$
- Ties broken by largest number of highs
- Final ranking will be done after FRG members respond

1. Physical processes 1/4

- 1. improve 2D hydrodynamic/sediment transport models 8H 4M 0L
- 2. sediment transport for ungaged/flashy basins 6H 6M 0L
- 3. hydrologic/hydraulic impacts of wetlands 6H 6M 1L
- 4. physical processes related to biostabilization of streambanks 6H 6M 0L
- system and local effects of stabilization structures
 7M 1L
- 6. urban flooding (exceeding drainage capacity, combined systems) 9H 2M 1L

1. Physical processes 2/4

- 7. urban flooding (stream restoration) 8H 3M 0L
- 8. extension of forecast horizon (radar, physical models, RS/GIS) 5H 6M 0L
- 9. better spatial definition of hydrologic and sediment processes 6H 4M 2L
- 10. probabilistic forecasts 3H 7M 0L
- 11. effects of removal of structures (e.g., dams) 5H 4M 4L
- 12. fate and transport of contaminated sediment 4H 5M 3L
- 13. urban flooding (WQ issues) 5H 4M 1L

1. Physical processes 3/4

- 14. hydrologic effects of manipulating floodplain properties 2H 7M 3L
- 15. flow-duration for ungaged watersheds 3H 5M 4L
- 16. low flow hydrology 4H 3M 3L
- 17. improve SAM (relative stability of the family of stable channel solutions) 4H 3M 5L
- 18. debris flows (frequency and quantity) 4H 3M 5L
- 19. tidal/fluvial correlation (e.g., interior drainage)

 2H 5M 4L
- 20. effects of ice on inland flooding 5H 1M 5L
- 21. tool to identify defining event for channel morphology 4H 2M 5L

1. Physical processes 4/4

- 22. rapid (hrs-days-months) H&H modeling for unmodeled streams 2H 4M 4L
- 23. quantify morphological and environmental benefits 2H 4M 6L
- 24. surface water/groundwater interactions for range of flow conditions 1H 4M 5L
- 25. long range (≈3 months) sediment forecasting 1H 4M 6L
- 26. definition of natural streambanks H 4M 6L
- 27. level of sophistication in characterizing physical processes OH 1M 9L

2. Remedial and mitigation measures (1/3)

- 1. EM/O&M Manual for bioengineered projects 10H 3M 0L
- 2. stream restoration forensics (lessons learned and design guidance) 7H 6M 0L
- 3. environmentally-friendly flood damage reduction measures **7H 5M 1L**
- 4. physical processes related to biostabilization of streambanks (selection and design criteria) 6H 5M 1L
- 5. engineered wetlands to improve WQ/habitat 6H 5M 2L

2. Remedial and mitigation measures (2/3)

- bank protection and grade control tech transfer
 3H 8M 1L
- 7. reduction of watershed sediment yield/pollutants through channel stabilization 3H 7M 2L
- 8. improve stable channel design techniques watershed approach to stabilization 3H 6M 3L
- 9. ice retention structures 7H 1M 2L
- 10. effects of dam removal 5H 3M 4L
- 11. urban stream corridor restoration (dredging for WQ)

 3H 5M 3L

2. Remedial and mitigation measures 3/3

- 12. update of nonstructural measures 4H 2M 6L
- 13. impact of reservoir operations on streambank erosion 1H 5M 0L
- 14. dynamic flow management/operation rule 1H 3M 4L
- 15. improved guidance on multipurpose structures 1H 3M 5L
- 16. resource banking (e.g., wetlands, sediment, detention) 1H 3M 6L
- 17. evaluating the environmental benefits of floodplains 2H 1M 5L
- 18. perennial vs ephemeral 1H 0M 6L

3. Built environment (1/3)

- 1. Hydrologic/ice impacts of climate change on existing flood control infrastructure 5H 5M 2L
- 2. update damage functions for life-line infrastructure 3H 7M 1L
- 3. land-use forecasting for H&H 3H 5M 3L
- 4. ice effects 5H 2M 3L
- 5. integrate/evaluate national databases of infrastructure, biological resources, cultural resources etc 2H 5M 4L
- 6. statistical sampling or estimation procedures for flood damage 1H 6M 3L

3. Built environment (2/3)

- 7. guidance for use of setback levees 3H 3M 1L
- 8. removal of structures 3H 2M 5L
- 9. explore addition of hydropower to existing facilities
 H 4M 6L
- 10. update built environment data on regular basis

 1H 3M 7L
- 11. national database of census data at the block level

 1H 3M 7L
- 12. low-cost construction methods for flood walls 1H 2M 4L

3. Built environment (3/3)

- 13. operation of flood control infrastructure during loss of power/other services 1H 0M 10L
- 14. techniques to evaluate basement flooding affected by sewage backup OH OM 6L

4. Natural environment

- hydrologic and water quality effects of wetlands 6H
 1L
- 2. defining environmental outputs 5H 5M 2L
- 3. roughness coefficients for wetland vegetation 3H 6M 3L
- 4. flood-induced morphological and other changes in floodplains 3H 5M 4L
- 5. characterizing natural channel 4H 3M 5L
- 6. freeze-thaw impacts 2H 5M 3L
- 7. ice effects 5H 1M 5L
- 8. characterizing geological floodplain 3H 2M 6L

5. Human consequences (1/2)

- 1. communicate H&H processes, including risk & uncertainty to public 8H 5M 0L
- 2. inclusion of loss-of-life valuations/determinations
 4H 4M 3L
- 3. social consequences of structural and nonstructural flood control projects 2H 5M 6L
- 4. integration of appropriate recreation or environmental education facilities 2H 3M 7L
- 5. informational guide describing ecologically friendly flood damage reduction projects 3H 1M 4L
- 6. update FDR to allow innovative property acquisition (e.g., temporary easements) 1H 4M 3L

5. Human consequences (2/2)

- 7. evaluation of evacuation as advance measure 1H 2M 5L
- 8. H&H project impacts on Federally-recognized tribes

 OH 1M 8L
- 9. emergency shelter environment OH OM 7L

6. Monitoring and maintenance (1/2)

- 1. long-term impacts of ecosystem projects on flood conveyance **7H 6M 0L**
- 2. incorporation of post-project monitoring capabilities in design 8H 4M 0L
- 3. environmental restrictions on flood control channel maintenance 6H 6M 0L
- 4. low-cost, robust instrumentation to support realtime data collection 5H 7M 0L
- 5. post-project evaluation of flood control project performance 7H 4M 2L
- 6. collection of HWM/damage data after flood events (instrumentation, improved methods) 6H 5M 0L

6. Monitoring and maintenance (2/2)

- 7. design short- and long-term monitoring for ecosystem restoration projects 6H 5M 2L
- 8. sediment transport data collection 4H 7M 0L
- 9. performance of aging flood control projects **7H 3M 3L**
- 10. real-time stream-gaging capabilities 5H 5M 1L
- 11. bed-load and suspended sediment measurement techniques 5H 3M 4L
- 12. remote monitoring of ice jams 5H 1M 2L

7. Emergency management (1/2)

- 1. flood-fighting forensics 9H 2M 1L
- 2. real-time forecasting for EM 7H 1M 1L
- 3. integration of EM and FDR processes 5H 5M 1L
- 4. real-time flash-flood forecasting 5H 4M 1L
- 5. integration of EM information management systems5H 3M 4L
- improve expedient flood-fighting techniques 3H 4M
 4L
- 7. incorporation of flood-fighting techniques in reconlevel studies 1H 4M 8L
- 8. advance measure analysis techniques 1H 1M 3L

7. Emergency management (2/2)

- effectiveness of various notification measures
 1H 1M 5L
- 10. effectiveness of emergency response measures over time 1H 1M 7L
- 11. effect of climate change on emergency measures **OH 1M 9L**

8. Planning analysis process

- 1. visualization in support of planning 8H 4M 0L
- 2. valuing environmental outputs 8H 4M 1L
- 3. plan formulation/evaluation analytical tools 6H 5M 0L
- 4. multi-objective planning 5H 3M 2L
- 5. integration of analytic tools 6H 1M 0L
- 6. consideration of TMDL 4H 2M 2L
- 7. update statistical software to 21st century 1H 4M 2L
- 8. methods for evaluating off-site benefits 2H 2M 4L
- 9. uncertainty of operations due to non-water resource requirements H 0M 8L

9. Policy from a Federal perspective

- 1. publicizing technically excellent Corps projects

 12H 0M 0L
- 2. recreation policy 7H 5M 0L
- 3. claiming loss-of-life benefits 8H 4M 1L
- 4. multi-agency watershed studies 4H 8M 0L
- 5. 800-cfs rule 10H 0M 0L
- 6. 1% spending rule for monitoring 7H 3M 1L
- 7. environmental education as stand-alone project output 6H 1M 4L
- 8. quantification of project performance augmentation by flood-fighting (viz., FEMA criteria) 3H 3M 3L

